Pollination, the Grand Interaction Among Flowers, Bees, Growers and Beekeepers

Organic Crops Workshop April 12, 2010

John A. Skinner
University of Tennessee
Squash Production Requires Pollination
Fruit and Vegetable Production Requires Pollination

Why Do We Need Bees?
Annual Pollinated Crop Value

- United States – $14.6 Billion
- Tennessee - $300+ Million
Tennessee Apiculture Programs

Estimated Economic Impact After Surveys: Reducing Losses to One-Half of Average Loss.
Saving 10,000 Colonies Valued at $1,720,000.
If Flowers Are Restaurants to Bees, Then What Are Bees To Flowers?

• Hungry?
• Thirsty?
• Robots?
• Sexual Facilitators?
• Fooled?
• Pollinators, of Course!
• Partners +
Comparing Flowers to Restaurants

- Both Offer Food “Rewards”.
 - Bees Need Nectar as Carbohydrate and Pollen as Protein.
 - People Need Carbohydrates and Proteins.

- Both Advertise to Attract Visitors.
 - Flowers are “Signs” to Bees.
 - Restaurants Use Signs to Attract People.
Yum! I found the Goodies!

Nectar!
What is the “Purpose” of Flowers?

- Advertisement to Attract Pollinators.
 - VISUAL
 - Color – Visible to Bees – Blue, White, Yellow
 - Bees “See” UV but not “Red”.
 - Nectar Guides of Contrasting Color.
 - TEXTURE – Affects reflection of light
 - FORM + DEPTH + SHAPE
Henbit –

Note red pollen on bees head

Note – Purple "nectar guides"
Evening primrose (Oenothera biennis): To the human eye the flower looks solid yellow but insects can aim for the bullseye in the centre.
Hooters

Shrimp Clams Wings

Lunch Special
Ham & Cheese Fries $5.49
Wing Special 3-6

2001 Calendars R Here
Magnolia Flower

1. Stigmas Receptive First
 Female First = Protogynous

2. Anthers Open Later
 Male Stage
Carpenter Bee Perforates Corolla

Honey Bee “Thieves Nectar”
I am glad Tennessee skunks are not this large!
Honey Bees, Pollination and Dogwoods? – You’ve Got To “Bee Kidding”

John A. Skinner
J. Patrick Parkman
Michael D. Studer and
Mark “Dogwood” Windham
Dogwood Breeding Project

“Fooling the Bees”
Dogwoods Are A Major Nursery Crop
Native Dogwoods Provide Food For Wildlife
<table>
<thead>
<tr>
<th>Dogwood Anthracnose</th>
<th>Powdery Mildew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discula destructiva</td>
<td>Microsphaera corni</td>
</tr>
<tr>
<td>Lesions on leaves</td>
<td>White Lesions on leaf surface.</td>
</tr>
<tr>
<td>Twigs, bark.</td>
<td></td>
</tr>
<tr>
<td>Aided by cool wet</td>
<td>Distorted foliage.</td>
</tr>
<tr>
<td>weather</td>
<td>Aided by warm dry weather followed by cool nights.</td>
</tr>
</tbody>
</table>
Cornus florida cultivars

- Appalachian Spring
 - White Bracts
 - Resistant to Anthracnose
 - Susceptible to Powdery Mildew

- Cherokee Brave
 - Pink Bracts
 - Resistant to Powdery Mildew
Overall Goal

To produce a white dogwood that is resistant to anthracnose and powdery mildew.
Dogwood Pollination

- Dogwoods Probably Native Bee Pollinated?
- Dogwoods Not Attractive to Honey Bees?
 - Very Low Nectar Production
 - More Attractive Nectar Plants Nearby?
 - Pollen Only?
- Pollination Studies Incomplete
Cultivars in Cages With a Nucleus Colony of Honey Bees
Trick or Treat The Bees?

- Create a False Nectary of Sugar Syrup
 - Gives Forager Food
 - Reward Reinforces Behavior
- Place at Base of Bracts – Careful Now!
- Add QMP – Queen Mandibular Pheromone
 - Adds Scent Cue
 - Cue Reinforces Behavior
- Low and “Beehold” – It Works!
The End