What is a disease?
How does it differ from other plant problems?

- **Disease** – caused by a pathogen, such as a fungus, bacterium, virus, or nematode.
- **Disorder** – caused by cultural or environmental factors, a.k.a. "abiotic problems."
- **Pest damage** – caused by insects or other animals that feed on or otherwise damage plants.

The Disease Triangle

All 3 have to be present & favorable for disease to occur

Disease Control for the Organic Producer

- Plan ahead
- Must be integrated
 - with general production practices
- Must have an ecological basis
 - Manage soil
 - Encourage diversity of beneficial microorganisms
 - Crop diversity

Disease Control for the Organic Producer

- Good crop husbandry
- Site selection
 - Good water drainage
 - Good air drainage
 - No history of problems
- Exclusion
 - Seed treatments
 - Certified seed
 - Disease-free transplants
 - Avoid chain-store plants
 - Infested soil on tractor equipment
- Protection materials
 - Copper
 - Sulfur
 - Biologicals
 - Bicarbonates
 - Bacteriophages
 - Oils (mineral, essential)
- Cultural practices
Good crop husbandry

Happy plants resist disease better.

Plants more susceptible to disease if:
- improper pH
- crowded
- weed competition
- seeded in cool soil
- inadequate fertilization
- excessive fertilization (poor drying conditions)

Site selection for disease control

Good water drainage

Surface drainage prevents standing water

Phytophthora capsici on pepper

Good internal drainage very important

Fusarium crown of pumpkin on Dickson silt loam soil

Air drainage

Wet rot (whisker rot, *Choanephora*)

Controllable with site selection & planting density. Avoid tree-lined fields.

Field disease history

Keep records

Some soil-borne pathogens are in all soils and are unavoidable.

Rhizoctonia

Rhizoctonia

Phytophthora capsici

Southern blight

Fusarium

Fusarium

Fusarium wilt

Some pathogens are limited in occurrence and clean fields should be available.
Exclusion
Keeping the pathogen out

- Seed disinfection
- Certified seed
- Disease-free transplants
 - Avoid chain-store plants
 - Cleaning infested soil from tractor equipment
 - Sanitizing transplant production tools

Seed treatment

- Seed disinfection -- Hot water
- Seed protection -- Kodiak, T-22, Actinovate

<table>
<thead>
<tr>
<th>Crop</th>
<th>Temp (°F)</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brussels sprouts, cabbage, eggplant, spinach,</td>
<td>122</td>
<td>25</td>
</tr>
<tr>
<td>tomato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broccoli, cauliflower, cucumber, carrot, collard,</td>
<td>122</td>
<td>20</td>
</tr>
<tr>
<td>kohlrabi, rutabaga, turnip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mustard, cress, radish</td>
<td>122</td>
<td>15</td>
</tr>
<tr>
<td>Pepper</td>
<td>125</td>
<td>30</td>
</tr>
<tr>
<td>Lettuce, celery</td>
<td>118</td>
<td>30</td>
</tr>
</tbody>
</table>

Must be adhered to, exactly. Hot water treatment has many drawbacks. See discussion in Commercial Vegetable Disease Control guide, http://www.utextension.utk.edu/publications/wfiles/W141.pdf

Clean equipment between fields

After working infested field, before working non-infested field

Clean tractor tires, plows, other implements if a difficult-to-control disease is present in some, but not all, fields. E.g., Phytophthora blight, fusarium wilt, bacterial diseases

Prevent pathogen introduction into transplant production system

- Clean and disinfect any re-used trays, pots, tools, or surfaces, using 10% bleach (NOP approved) or a hydrogen peroxide (NOP and OMRI approved) product.
- Do not allow soil particles to contact potting mix.
 - Do not store or mix potting media on ground
 - Wash hands before working
 - Especially if you smoke (viruses)

Protection materials I

- Copper -- Good control of bacterial diseases; fair to moderate control of some fungal diseases. Note: There are some restrictions on how copper is used, but most copper products are NOP approved.
- Sulfur -- Excellent control of powdery mildews; good control of peach scab; slight rust control.
- Biologicals (biocontrols) -- Can provide fair control, but high pathogen population overwhelms them. Mostly for soil-borne diseases.

cont’d
Bacterial spot of tomato

Copper sprayed
Not sprayed

Sulfur

Cucurbit powdery mildew

Bean rust control
Resistant varieties and sulfur sprays

Protection materials II
- Bicarbonates - Slight control of powdery mildews and a few other fungal diseases.
- Bacteriophages - Viruses that attack bacteria. Specific for bacterial spot and speck of tomato and bacterial spot of pepper.
- Oils
 - Mineral oils - Moderate control of powdery mildews and some control of viruses vectored by aphids.
 - Essential oils (plant extracts) - Convincing evidence of disease-control activity is lacking.

Cultural Practices for Disease Control
- Crop rotation
- Sanitation
 - Plow under residue
 - Roguing
- Irrigation practices
- Improve drainage
 - Raised beds
 - Incorporate organic matter
- Control other pests
- Soil solarization
- Manipulate environment
 - Greenhouse practices
 - Avoid crowded plantings
- Resistant varieties
- Biofumigation
 - Green manure
 - Seed meal

Crop rotation is family rotation
Plant a member of a different plant family on a plot of ground each year

<table>
<thead>
<tr>
<th>Family*</th>
<th>Example members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cucurbitaceae</td>
<td>Cucumber, cantaloupe, watermelon, pumpkin, squash, gourds</td>
</tr>
<tr>
<td>Cruciferae</td>
<td>Broccoli, cabbage, Brussels sprouts, collard, mustard, kale, turnip, rutabaga</td>
</tr>
<tr>
<td>Gramineae</td>
<td>Corn, grasses</td>
</tr>
<tr>
<td>Leguminosae</td>
<td>Beans, peas</td>
</tr>
<tr>
<td>Solanaceae</td>
<td>Tomato, potato, pepper, eggplant</td>
</tr>
</tbody>
</table>

* There are several other families represented by 1 or 2 vegetable crops.
Crop Rotation

Works best against pathogens that:

- Are soilborne (so they can’t escape)
- Have narrow host range (so they can’t find something else to eat)
- Are short-lived (so they can’t wait you out)

Crop rotation can be affected by the farm plan

Factors affecting field site selection:
- good production potential
- close to irrigation
- type of marketing

A four-yr rotation plan

Cucurbit downy mildew
A disease that crop rotation will not control

Tomato spotted wilt virus
Most viruses are insect-borne and not controllable by crop rotation.

Sanitation

The destruction or removal of diseased plants.
1. Plow under crop residue
 2. Roguing

May also include Exclusion practices such as cleaning and disinfecting tools.

Sanitation

- Plow under crop residue ASAP after harvest. Speeds decomposition of debris.
- Turning plow best, but can cause erosion problem.
- Disk plow is adequate, unless southern blight (Sclerotium) is a problem.
Roguing
The removal of diseased plants
Should be done immediately upon first detection of a disease.
Don’t scatter the pathogen during the removal process!

Sclerotia and white mycelium

Southern blight, Sclerotium rolfsii

Removal of diseased plant parts, where practical
(gardens, greenhouses, high tunnels)

Target spot (Corynespora) of cucumber. Too late for removal of infected plant parts.

Low tunnels and row covers
They're great, but they can interfere with drying conditions and spraying.
Remove any diseased plants prior to row cover application.

Cull piles
Don't dump in production fields

Good idea to scoop it up, carry it away and bury it, especially if you had late blight.

Late blight

Clean Trellising Stakes
- Wash soil and debris from stakes
- Disinfect with a 10% bleach solution (NOP-approved)
Improve drainage

- Incorporate organic matter (cover crop, compost, etc.)
- Use raised beds (plastic mulches are NOP-approved).

Control other pests

- Some pathogens are spread by insects.
- Weeds reduce drying conditions, and can host certain pathogens.

Insect-transmitted diseases and their vectors

- Mosaic virus -- aphids
- Tomato spotted wilt virus -- thrips
- Cucurbit yellow vine disease -- squash bugs
- Cucurbit bacterial wilt -- cucumber beetles

Manipulate the environment

I.e., keep the leaves dry and humidity low

Field and greenhouse

- Watch plant density (sun and air)
- Trellising (sun and air)
- Avoid overhead irrigation

Greenhouse

- Ventilate warm, moist air out at the end of each day

Plant density

Crowding = poor drying conditions

- Use recommended row spacing for tall-growing plants.
- Avoid broadcasting turnips.
- Leaf spot a major threat.
- Seed in rows at rec. spacing.

Resistant varieties make life a lot easier.

But do your customers want that variety?
Diseases for which resistant varieties are the primary means of control

Some diseases will be difficult to control IF the pathogen is present and IF conditions are favorable.

Ex.: Most virus diseases, black rot of cabbage, verticillium and fusarium wilts of tomato (there are more).

WHAT DISEASES DO I NEED RESISTANCE TO?
Use history as your guide - What diseases has the field or farm had problems with?

Be skeptical of certain claims

• "Disease resistant" - A cop out. Specific diseases need to be named.
• "Resistant to powdery mildew" - Fine, but how resistant is it? Resistance levels can range from low to high.
• "Tolerant" - Find out for yourself how useful this is on your farm.

Bacterial spot
"Mountain Fresh" has valuable "field tolerance"

Biofumigation
Certain members of the mustard family provide soil fumigation naturally.

Caliente mustard, Brassica juncea, is commonly used for this purpose.

Two methods:
1. As a green manure
2. Using seed meal

Biofumigation with mustard I
As a green manure

Cover crop is cut down and quickly plowed in. It produces a gas in the soil.

Biofumigation with mustard II
Using seed meal

Mustard seed meal may be applied to the row and tilled in.

Plastic mulch may be applied to the row to slow the escape of the gas.
Organic growers: Beware early blight
Control options very limited
1. Crop rotation
2. Staking
3. Mulching
Overwinters in plant debris in soil. Can also enter field on air currents.

Transplant production: Don’t start out behind the 8-ball
Prevent the splashing of soil particles onto leaves. Cover the soil or place trays onto benches.

Organic growers: Beware anthracnose
Control options limited; explosive in rainy weather
However: beans, cucurbits, strawberries, and blackberries each has its own anthracnose fungus (will not cross over)
1. Crop rotation
2. Resistant varieties – bush snap beans, cucumbers, watermelons, strawberries
3. No overhead irrigation if present

Organic vs. Conventional
How disease control is different for the organic grower
• Have fewer weapons for control, so exclusion of pathogens all the more important (Have to be more careful about borrowing equipment).
• Rely more heavily on a biologically diverse soil to suppress diseases, so proper amendments are important.
• Rely more heavily on resistant varieties. Thus, accurate ID of diseases is important so appropriate varieties can be used.
• Heirloom varieties and the saving of seeds play a bigger role, so on-farm seed disinfestation is more important.

Questions?
Steve Bost
scbost@utk.edu
(615) 835-4573